

Cloud Native Application Development

Cloud Native Application Development

 2

1. Introduction
This document describes the project undertaken by PalC Networks for developing cloud native DNS

System application for our Malaysian client IncepXion.

1.1. Introduction on Cloud Native Application Development

For starters, we need to understand the difference between cloud based and cloud native application

development.

 Cloud-native development refers to application development that is container-based, dynamically

orchestrated, and leverages microservices architectures. Because cloud-native applications run in

containers and are dynamically orchestrated, they exhibit many of the attributes of applications

deployed in cloud-based infrastructures, such as elastic scalability and high availability.

Cloud-native applications are fundamentally container-native applications and require developers to

achieve familiarity with containers and associated orchestration frameworks such as Kubernetes. The

need to demonstrate proficiency with Kubernetes requires developers to obtain expertise with

developer tools that provide insight into relationships between discrete containers. Furthermore,

developers need proficiency with the design of microservices-based application architectures that are

executed in Kubernetes.

Whereas cloud-based development refers to application development executed by means of a browser

that points to a cloud-based infrastructure, cloud-native development refers more specifically to

application development grounded in containers, microservices, and dynamic orchestration.

2. DNS System
The objective was to implement IncepXion patented Telephony based DNS System in Cloud native

environment. The high level components of Telephony based DNS system are represented in below

diagram.

Cloud Native Application Development

 3

Figure1: Telephony based DNS System Components.

This requirement was achieved by using Openstack(Queens) as Iaas. After the VM orchestrations,

Kubernetes was used for container orchestration.

2.1. VM Orchestration

We had used Openstack-Ansible(OA) flavour of Openstack for VM orchestration. It is an official

Openstack project which aims to deploy production environments from source in a way that makes it

scalable while also being simple to operate, upgrade and grow.

As the name suggests development framework of Openstack-Ansible is built using Ansible. The basis for

all deployed Openstack software will be from source. This means that OpenStack services and their

python dependencies will be built and installed from upstream source code as found within the

OpenStack Git repositories. This project provides a system which will get patched and updated if needed

from Openstack upstream code. Openstack services are run using LXC containers, this makes it more

scalable.

Figure 2: Core Services of Openstack

Highlights of the features supported in DNS system project:

1. Open vSwitch(OVS) for Layer 2 Services.

2. OpenDaylight(ODL) for Layer 3 Services.

3. Heat Templates for faster deployments.

4. Storage – Block Storage (Cinder), Object Storage (Swift) and CEPH Integration

for storage servers.

Openstack-Ansible version Queens was used for this project.

Cloud Native Application Development

 4

2.2. Container Orchestration

Kubernetes was used for container orchestration.

Figure 3: Kubernetes Cluster and its components.

Kubernetes is a powerful open-source system, initially developed by Google, for managing containerized

applications in a clustered environment. It aims to provide better ways of managing related, distributed

components and services across varied infrastructure.

Kubernetes, at its basic level, is a system for running and coordinating containerized applications across

a cluster of machines. It is a platform designed to completely manage the life cycle of containerized

applications and services using methods that provide predictability, scalability, and high availability.

Kubernetes Components are depicted in above diagram.

Highlights of the features supported in DNS system project:

1. Each component is dockerized.

2. Container to Container networking across VMs.

3. Clustering of some of the services.

3. GLOSSARY

DNS Domain Name System

VM Virtual Machine

OA Openstack-Ansible

Cloud Native Application Development

 5

OVS Open vSwitch

ODL Open Daylight

	1. Introduction
	1.1. Introduction on Cloud Native Application Development

	2. DNS System
	2.1. VM Orchestration
	2.2. Container Orchestration

	3. GLOSSARY

